skip to main content


Search for: All records

Creators/Authors contains: "Engelhardt, Netta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We find a new on-shell replica wormhole in a computation of the generating functional of JT gravity coupled to matter. We show that this saddle has lower action than the disconnected one, and that it is stable under restriction to real Lorentzian sections, but can be unstable otherwise. The behavior of the classical generating functional thus may be strongly dependent on the signature of allowed perturbations. As part of our analysis, we give an LM-style construction for computing the on-shell action of replicated manifolds even as the number of boundaries approaches zero, including a type of one-step replica symmetry breaking that is necessary to capture the contribution of the new saddle. Our results are robust against quantum corrections; in fact, we find evidence that such corrections may sometimes stabilize this new saddle. 
    more » « less
  2. Black holes provide a window into the microscopic structure of spacetime in quantum gravity. Recently the quantum information contained in Hawking radiation has been calculated, verifying a key aspect of the consistency of black hole evaporation with quantum mechanical unitarity. This calculation relied crucially on recent progress in understanding the emergence of bulk spacetime from a boundary holographic description. Spacetime wormholes have played an important role in understanding the underpinnings of this result, and the precision study of such wormholes, in this and other contexts, has been enabled by the development of low-dimensional models of holography. In this white paper we review these developments and describe some of the deep open questions in this subject. These include the nature of the black hole interior, potential applications to quantum cosmology, the gravitational explanation of the fine structure of black holes, and the development of further connections to quantum information and laboratory quantum simulation. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)